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ABSTRACT. The dynamics and complexity of plant communities influence the diversity
and distribution of animals in various environments. Coleoptera are the most diverse
group of insects and are valued as monitoring and environmental assessment tools.
However, their diversity and dynamics in these high-altitude environments are poorly
known. Using pitfall traps and suction sampling, we collected beetles to study their
community responses to changes in different vegetation heterogeneities (low,
intermediate, and high). The heterogeneity gradient was determined by considering the
dominant plant species in each habitat, the percentage of vegetation coverage, and the
percentage of vertical strata. Guild's responses to vegetation heterogeneity were analysed
in conjunction with the patterns of alpha and beta diversity in beetles. Representatives of
41 species/morphospecies of beetles, 16 families, and four guilds were reported.
Significant variations were observed in guild composition and alpha and beta diversity,
especially between high and low vegetation heterogeneity habitats. The significant species
turnover between sites is the main factor responsible for the high beta diversity,
supporting considerable habitat heterogeneity within these environments. Phytophagous,
detritivorous, necrophagous, and predatory beetles exhibited distinct responses to the
vegetation's heterogeneity. This suggests that every habitat under investigation possesses
a distinct structure of beetle communities. Predators were important in habitats with more
diverse vegetation, while phytophagous were important in the most homogeneous ones.
Beetle communities in the Puna and Altos Andes of Salta province respond positively to
vegetation heterogeneity, which plays a crucial role in determining the composition of
small-scale beetle communities in arid high-altitude environments.
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INTRODUCTION

Vegetation provides the primary structure of the environment in the majority of habitats (Rutten et al.,
2015). The complexity has the potential to increase biodiversity (Gardner et al., 2009), and support
ecosystem services. Plant community dynamics can influence the biodiversity of animals (Franklin et
al., 2016). Vegetation heterogeneity expands niche space, allowing more coexistence of animal species
(Tews et al.,, 2004). The phenomenon implies that environments with more structurally complex
vegetation have more micro-habitats, food resources, shelters, and sites for hibernation, reproduction,
and oviposition as well as opportunities for specialisation (Stein et al., 2014, Lawton, 1983).

Coleoptera is the most diverse insect order (Betancourt et al., 2009) and they play important roles in
the ecosystem because they occupy all trophic levels from decomposers to predators and phytophages
(Crowson, 1981; Alonso-Zarazaga, 2015), so they are a useful tool for environmental monitoring and
assessment (Abdel-Dayem et al., 2007; Aldhafer et al., 2016). Beetle communities react to environmental
changes such as the degree of vegetation cover, vertical stratification, vegetation density, soil type, and all
of which influence the micro-spatial distribution of their species (Escobar & Chacén, 2000). The
bioecological characteristics of beetles lead to group them into guilds, which are non-phylogenetic
groups of species that share one or more vital resources (Blondel, 2003). The use of guilds is a useful
method for determining how biotic communities respond to habitat changes (Cardoso et al., 2011).

The Puna and Altos Andes ecoregions are critical for biodiversity preservation because they are
classified as "vulnerable" in the Global 200 (Olson & Dinerstein, 2002) and have been designated as
global priority areas. In the past few years, mining and ecotourism have grown a lot, which has put a
great deal of stress on the desert environments (Morello et al., 2012), as well as mountain species are
sensitive to climate change and especially susceptible to global warming (Wilson et al., 2007; Dieker et
al., 2013). The species that live in these regions would be more vulnerable to extinction if these events
occurred environmental hazards because they would be unable to explore higher altitudes in search of
the conditions required for survival (Lovejoy, 2010). The mentioned ecoregions are distinguished by
strong winds, high diurnal temperatures and scant precipitation, which prevent the formation of dense
vegetation covers. Furthermore, the landscape contains "vegas," or areas where water accumulates in
the spring, resulting in the formation of distinct micro-environments (Morello et al., 2012). As a result,
the type of soil and the accumulation and/ or persistence of water in it have an impact on the vegetation
in these high-altitude ecoregions. The environmental condition causes the dominant plants to be small
(usually less than 1.5 m in height), to have little canopy coverage, and to be irregularly dispersed
throughout the area (Morello et al., 2012). As a consequence, they form patches where the plants are
close together, reducing the impact of strong winds.

Until now, the diversity and dynamics of beetles in the Puna and Altos Andes environments of the
Argentine province of Salta have been poorly known. The study of the group of insects in the high-
altitude environments is thus thought to be worthwhile because beetles that live in these regions must
adapt to changing climatic conditions (with large daily and seasonal amplitudes) and fluctuations in
resource availability. Therefore, the objective of this study is to determine the effect of vegetation
heterogeneity on beetle communities of Salta's Puna and the Altos Andes.

MATERIAL AND METHODS

Study area. The study comprises the Cachi, La Poma, and Los Andes departments of the province of
Salta (Argentina), which are included in the Puna and Altos Andes ecoregions according to Morello et
al. (2012) (Fig. 1 a-b). Beetles were collected in protected natural environments of the Reserva Natural
de Fauna Silvestre Los Andes, one of the country's largest reserves, as well as in unprotected natural
environments of the Los Cardones-La Poma Longitudinal Corridor. Arid mountain ranges above 2500
m a.s.l. in the country's far northwest serve as a representation of these ecoregions' overall landscape.
The climate is dry, windy, and cold, with significant daily temperature fluctuations (approximately
30 °C) and annual rainfall ranging from 100 to 800 mm during the summer (Morello et al., 2012). The
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shrubby steppe of the Puna consists basically of low, woody, perennial, and aromatic shrubs of Aloysia
salsoloides (Griseb.) Lu-Irving & N. O'Leary, 2014 (rica-rica) (Fig. 1g), a plant of spinescent branches,
sessile leaves, small, and lobed revolute margin; Parastrephia sp. Nutt.,, 1841 (tola) (Fig. 1i), with
branches without thorns, sessile leaves, small, scamiforms, and inflorescence in a chapter; Adesmia
horrida Gillies ex Hook. & Arn., 1832 (ahagua) (Fig. 1h) with spinescent branches and small, compound
leaves; and, finally, Senecio friesii Cabrera, 1935 (Senecio) (Fig. 1f) with branched stems from the base,
sessile leaves, small, and inflorescence in a chapter (Morello et al., 2012). The environments of
the Altos Andes are characterised by "iros grasslands" (Festuca orthophylla Pilg., 1898), a perennial herb,
caespitose, with rhizomes and erect and needle-like leaf lamina (Szumik et al.,, 2016); shrubby
formations of A. salsoloides can also be found at lower altitudes.

Sampling. Beetles were collected on the first days of December 2014, June 2015, and February 2018, in
nine geo-referenced sites (Fig. 1b) that were at least 4 km apart. At each site, samples were taken from
an area that was about one hectare in magnitude, taking into account that the vegetation in the area
around it (about 600m) was the same. Different degrees of vegetation heterogeneity determined by
dominant species and soil cover were taken into account when selecting sampled sites, classifying them
as low (LH), intermediate (IH), or high (HH). The three low vegetation heterogeneity (LH) sites (LH1:
524° 31.99' W67° 21.13', LH2: S524° 29.60' W67° 21.53', and LH3: 524° 21.31' W66° 59.01") all had a single
dominant plant species (A. salsoloides), a vertical stratification of less than 50 ¢m, and a soil cover
percentage of less than 10% (Fig. 1e). Sites with intermediate vegetation heterogeneity (IH) (IH1: 525°
01.65' W66° 05.49'; TH2: S24° 17.50" W66° 13.12'; and IH3: S24° 34.72' W67° 10.01') possessed two
dominant plant species (A. salsoloides and Parastrephia sp./S. friesii), vertical stratification up to 100 cm,
and a percentage of soil coverage between 10-25% (Fig. 1d). Finally, three dominant plant species (A.
salsoloides, Parastrephia sp., and A. horrida) were found at the three high vegetation heterogeneity (HH)
sites (HH1: 524° 53.98' W66° 08.74', HH2: 524° 51.74' W66° 08.79', and HH3: 524° 15.57' W66° 23.20')
(Fig. 1c), with a vertical stratification of 0-100 cm and a coverage percentage between 25-40%.

A total of 270 samples were taken using two different material collection techniques. Thus, at each
of the nine sites sampled at three different times, five pitfall traps were placed to record the soil-
dwelling beetles, and five suction samples were taken to collect the vegetation-dwelling beetles. Pitfall
traps were placed along a 20 m-long linear transect and were active for 10 days at each sampling. As
pitfall traps, cylindrical plastic containers measuring 7.5x12.2x5.2 cm (upper diameter x depth x lower
diameter) were buried at ground level and preserved with supersaturated saline (salt [Kg] water [1], 1:8
ratio with detergent drops). Simultaneously, at each site, suction samples were collected at random
over vegetation, covering a 50 m strip on either side of the linear transect. For this, a Stihl vacuum
cleaner with a 1.10 m-long, 12 cm diameter tube with a thin mesh that collects arthropods was used.
Each sample was defined as a one-minute suction of vegetation in a one-square-metre area.

The collected materials were placed in polyethene bags with 70% ethanol, labelled, and transported
to the laboratory for cleaning, sorting, and identification. The collected specimens were recorded on
electronic sheets and classified into trophic guilds, families, and species/morphospecies using a
database of digitised photos of the species/morphospecies with distinguishing characteristics, which
was compared with the Instituto para el Estudio de la Biodiversidad de Invertebrados (IEBI) database.
The samples were collected with permission from the Ministerio de Ambiente y Desarrollo Sustentable,
Government of the Province of Salta, Argentina (Resolution No. 826).

Coleopteran families were identified using the key developed by Betancourt et al. (2009) and
classified into trophic guilds according to Susilo et al. (2009) and Norfolk et al. (2012). To identify the
Tenebrionidae species, various taxonomic keys and comparisons were used with material from the
collection of the Instituto Argentino de Investigaciones de las Zonas Aridas (IADIZA). For
Curculionidae, the taxonomic keys and descriptions from the Catalogue of Naupactini Species from
Argentina and Uruguay (Lanteri & del Rio, 2021) were used. Analia Lanteri, Guadalupe del Rio, and
Sergio Roig-Jufient were consulted and confirmed the identifications of the families Curculionidae and
Carabidae.
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Figure 1. Location of the sampling sites, type of environments sampled and dominant plant species.
a. Map of the sampling area located in Northwestern Argentina. b. Satellite image showing the location of
the sites considering the vegetation heterogeneity: low (LH), intermediate (IH) and high (HH). c¢. The
environment with high vegetation heterogeneity. d. Environment with intermediate vegetation
heterogeneity. e. Environment with low vegetation heterogeneity. f. Parastrephia sp. (tola); g. Aloysia
salsoloides (rica-rica); h. Adesmia horrida (afiagua); i. Senecio friesii (senecio).
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Vegetation heterogeneity variables. As a first step, we used linear and polynomial regressions to rule
out the idea that temperature and altitude could change the beetle communities at the sampled sites.
This prompted us to select vegetation heterogeneity variables for evaluation. Thus, at each site and by
sampling date, the richness of plant species (SP), the percentage of vegetation coverage (%COV), and
the percentage of vertical strata (%VS) were measured. This allowed for the definition of high (HH),
intermediate (IH) and low (LH) vegetation heterogeneity habitats in advance. The percentage of
vegetation coverage per site was determined by randomly selecting five 5x5m quadrants. The
percentage of vertical stratum was calculated using the VESTA photographic method (Vertical
Vegetational Structure Analysis) (Zehm et al., 2003) and measured at each site by selecting three points
at random and photographing each of them four times (one for each cardinal point up to a metre of
height), with a white panel of 1x1 m (with marks every 50cm) for vegetation contrast. Using the Adobe
Photoshop CS6 software, the variable's value was calculated as a percentage of each stratum.

Data analysis

Inventory, Alpha Diversity, and Trophic Guilds. To determine whether the sample obtained was
representative of beetle diversity, sample completeness profiles by habitats and rarefaction
extrapolation curves based on individuals with the same level of sample coverage were calculated.
Chao et al. (2020) proposed a methodology based on Hill numbers, where q° represents species
richness, ! the Shannon exponential index, and g2 the Simpson inverse index (Hill, 1973). Using 95%
confidence intervals and 100 permutations, calculations were done using the bootstrap method and the
free online app iNEXT-4steps (Hsieh et al., 2016). Also, the estimated completeness values of the
sample were evaluated using the criteria of Cardoso (2009), which sets up three categories: "reasonable"
(50-70% completeness), "complete" (70-80%), and "exhaustive" (90-100%). The beetles collected for the
study were divided into four guilds based on their food source (Blondel, 2003): necrophagous
(consume dead animals), detritivorous (consume decomposing organic matter), phytophagous
(consume plant substances), and predators (consume live animals). The abundance range curves were
used to analyse the guild structure by habitat (Magurran, 2004).

Beta Diversity

Vegetation heterogeneity and beetle diversity. To determine whether there are differences in the
composition of species associated with the degree of vegetation heterogeneity of the sampled sites, a
Canonical-Correlation Analysis (CCA) was performed with Bray-Curtis as a distance measure, using
PC-ORD software version 7.04 (McCune & Mefford, 2016) and the protocol proposed by Peck (2010).
Following sorting, the similarity values of the various groups formed were subjected to a
multidimensional permutation procedure (MRPP) to determine their statistical significance, with Bray-
Curtis as a distance measure.

Beetle community composition. Using the Bray-Curtis similarity index as a distance measure and the
PC-ORD version 7.04 software (McCune & Mefford, 2016), a conglomerate analysis was used to
compare the taxonomic composition of beetle communities between sites. Lastly, the method proposed
by Baselga (2010) was used to evaluate beta diversity between habitats by measuring total beta
diversity with the Sorensen dissimilarity index (Bsor). Beta diversity (Bsor) can reflect two underlying
phenomena (Baselga, 2010): spatial species turnover (Psn) and nestedness (Bsne), both of which are
caused by different processes (species replacement and species loss, respectively). So, the relative
importance of these two parts was measured, and their values were given as percentages. The Betapart
package in R was used for this analysis (Baselga et al., 2013).

RESULTS

Inventory, Alpha Diversity, and Trophic Guilds. A total of 178 beetles were collected from 16 families,
four guilds, and 41 species/morphospecies (Table 1). Habitats with intermediate heterogeneity (IH)
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had higher species richness and abundance (S = 21; N = 93), followed by HH habitats (S = 17; N = 30),
while LH habitats had low species richness but intermediate abundance (S = 10; N = 55) (Table 1).
Ptinidae (N = 46) and Bruchidae (N = 33) were the most abundant families, while Tenebrionidae (S = 9)
and Curculionidae (S = 7) were the most diverse (Table 1), with the latter family present in all habitats.
The completeness values of the samples for q=0 (species richness) indicate that the beetle inventory
obtained in LH habitats was "complete" (87%) and in IH "reasonable" (63%).

In habitats with HH, the inventory was not complete (<50%), but almost all of the abundant and
highly abundant species were recorded, based on the estimated undetected diversity of q=1and q =2
(Table 2). As a result, the sample size used provides data that is representative of the beetle diversity
present in the habitats studied and is sufficient to infer the true diversity of the communities.
Extrapolation/interpolation analysis of rarefaction for the same level of sample coverage revealed that
HH and IH habitats had significantly higher species diversity (q=0) than LH habitats (Table 2).
Meanwhile, HH had significantly higher q=1 and q=2 values (Table 2). This study identified four guilds
(Figs 2-3), with phytophagous (S = 17) and predators (S = 15) having the most species diversity,
followed by necrophagous (S = 9) and detritivorous (S = 8). The structure and composition of the
coleopteran guilds varied across the habitats studied (Fig. 3), indicating that phytophagous had a
greater diversity of families (seven), whereas the remaining guilds had only four. In HH habitats, there
were more predators than in LH habitats, but phytophagous were more common in LH habitats than in
IH habitats. Detritivorous beetles were abundant in LH, whereas their abundance was lowest in IH
habitats, which were dominated by necrophagous species (Fig. 3).

Among detritivorous, Physogaster andinus Pefia, 1995 (Tenebrionidae) dominated in the LH
habitats, while the same species of Ptinidae (Ptinidae sp.2) dominated in the IH and HH habitats. In the
case of phytophagous and necrophagous beetles, there were changes in species dominance across the
habitats studied, as well as a tendency to increase species richness from LH to HH habitats (Fig. 2). A
few phytophagous species (one or two) were shared between habitats with different vegetation
heterogeneity, with one species of curculionid (Curculionidae sp.1) dominating the IH and HH habitats
and a bruchid (Bruchidae sp.1) dominating the LH habitats (Fig. 2). Although the necrophagous guild
exhibited a different species composition in HH and IH habitats (Fig. 2), Adistemia watsoni Wollaston,
1871 (Lathridiidae) was the only species reported in LH habitats, and was found in association with
other species in HH habitats (Fig. 2). Finally, predators showed a high species richness in IH habitats
(Fig. 2); despite an intermediate abundance (Fig. 3), few species are shared between habitats with
different heterogeneities. The relationship between predators and vegetation heterogeneity was directly
proportional, but not for the other guilds (Fig. 3).

Beta Diversity

Vegetation heterogeneity and beetle diversity. The beetle assemblages from the three habitats studied
were arranged in a gradient pattern of heterogeneity, with the X-axis being the most prominent (Fig. 4).
To assess the effect of the variables on these communities, a CCA analysis was performed, yielding an
ordering that explained 65.20% of the total variance (axis 1=61.10% and axis 2=4.10%; p=0.01), with the
first eigenvalue of 0.56 and the second of 0.42. The MRPP analysis revealed that there are statistically
significant differences between the communities of the LH and HH habitats (A=0.04909514; p=0.02),
but no significant differences were detected between these and the IH sites. Among the variables
measured in the field, it is shown that % COV (r=0.80) correlated positively with the first axis, as well as
VS (r=0.82), influencing the communities of the HH and IH habitats because there is a higher
percentage of vegetation coverage and a greater vertical stratification (VS) compared to the
communities of the LH habitats. Predators and phytophagous, on the other hand, were positively and
negatively correlated with the first axis (r=0.55 and 0.76, respectively). The detritivorous guild was
weakly and positively (r=0.22) correlated with the second axis, whereas the necrophagous guild was
negatively (r=0.27) correlated with the same axis.
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Table 1. Abundance of beetle species by families recorded in the Puna and Altos Andes ecoregions,
Salta province (Argentina). LH (low), IH (intermediate) and HH (high) vegetation heterogeneity.

Abundance
IH LH

Family ‘ Species/Morphospecies

as
as

Anthicidae
Bruchidae
Carabidae

Anthicidae sp.1 0
Bruchidae sp.1

Selenophorus sp.

Bembidion sp.

Hippodomia convergens Guérin-Méneville
Coccinellidae sp.1

Coccinellidae sp.2

Coccinellidae sp.3

Coccinellidae sp.4

Cryptophagidae sp.1

Cucujidae sp.1

Cylydrorhinus sp.

Sibina sp.2

Sibina sp.1

Curculionidae sp.1

Curculionidae sp.2

Curculionidae sp.3

Curculionidae sp.4

Dermestidae sp.1

Elateridae sp.1

W
@

Coccinellidae

Cryptophagidae
Cucujidae

Curculionidae

Dermestidae
Elateridae

Lathridiidae
Leiodidae
Melyridae

Ptinidae

Scarabaeidae

Staphylinidae
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Nargomorphus sp.

Melyridae sp.1

Ptinidae sp.1

Ptinidae sp.2

Ptinus sp.

Melolonthinae sp.1
Staphylinidae sp.1
Staphylinidae sp.2
Staphylinidae sp.3
Staphylinidae sp.4

Euconnus sp.

Praocis magnoi Molinari
Praocis pentachorda Burmeister
Psectrascelis cariosicollis Fairmaire
Physogaster andinus Pefia
Epipedonota interandina Vidal y Flores
Scotobius planatus Erichson
Praocis ecostata Kulzer
Entomochilus varius (Kulzer)
Omopheres sp.
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Table 2. Completeness of the inventory of beetles obtained in the Puna and Altos Andes ecoregions of
the province of Salta (Argentina). The observed, estimated (extrapolation/ interpolation analysis of
rarefaction for the same level of sample coverage) and unseen diversity values for each of the
parameters are shown for q° (species richness), q! (the Shannon exponential index), and g2 (the Simpson
inverse index). Values in parentheses mean the percentage of inventory completeness. (* = the

significant differences with a confidence level of 95%).

Habitat Diversity Observed (%) Estimated Unseen (%)
HH q0 17.00 (37) 46.24 29 (63)
ql 14.07 (64) 28.36* 10 (36)
q2 11.84 (92) 18.91* 2(8)
IH q0 21.00 (63) 33.37 12 (37)
ql 9.13 (89) 11.07* 2 (11)
q2 4.70 (100) 4.89 0 (0)
LH q0 10.00 (87) 11.47* 1(13)
ql 4.38 (95) 4.89* 0(5)
q2 2.60 (99) 2.68 0(1)
Abbreviations — HH: Environment with high vegetation heterogeneity; HI: Environment with intermediate vegetation

heterogeneity; LH: Environment with low vegetation heterogeneity.

Composition of beetle communities. conglomerate analysis revealed that the LH3 site (A. salsoloides) has
a distinct beetle species composition in comparison to the other sites under study (Fig. 5); in contrast,
the other sites of the same habitat shared approximately 91.2% of their species. In contrast, habitats
with three dominant plant species (HH2 and HH3) shared more than 80% of their species, and IH1 (A.
salsoloides and Parastrephia sp./ Senecio friesii) shared nearly 70% of its species with HH1 (Fig. 5). Finally,
the recorded values of total beta diversity between sites of the same habitat (on a local scale) were high,
with IH having the highest value (Table 3). Spatial turnover of species was primarily responsible for
beta diversity in all habitats (Bsor>86%), but not nestedness (Bsne<13.1%). This pattern was maintained
when beta diversity between habitats was taken into account, with high Bsor values and a significant
role in species turnover (Table 3). With increased species loss between HH and LH habitats,
nestedness between those communities accounted for only 3% and 6% of the total (Table 3).

Table 3. Values of beta diversity (Bsor) and their components of turnover (Bsi) and nestedness (Psne)
for Coleoptera comparing between sites of the same habitat and by habitats. LH (low), IH (intermediate)
and HH (high) vegetation heterogeneity.

Habitat Bsm (%) P sne (%)
LH 0.77 0.70 (91) 0.07 (9)
IH 1.00 1.00 (100) 0.00 (0)
HH 0.84 0.73 (87) 0.11 (13)
HH-IH 0.73 0.70 (96) 0.03 (4)
HH-LH 0.85 0.80 (94) 0.05 (6)
IH-LH 0.93 0.90 (97) 0.03 (3)
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Figure 2. Range/abundance curves by guilds of beetle species collected in high-altitude habitats in north-
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Figure 3. Composition of beetle guilds collected in high-altitude habitats in north-western Argentina
(LH: low heterogeneity; IH: intermediate heterogeneity; HH: high heterogeneity).
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Figure 4. Ordination obtained by CCA of the assemblages of families of Coleoptera in relation to the
vegetation heterogeneity variables (% COV: the percentage of vegetation coverage; VS: the percentage of
vertical strata), and beetles guilds.
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A. salsoloides — LH 1-2 (91.2%)

A. salsoloides — |
Aloy.-Par./Sen. 1IH 1 (69.9%)
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IH 3 58.5%
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Figure 5. Cluster resulted from a conglomerate analysis to compare the similarity of the taxonomic
composition of beetle communities between studied sites (LH: low heterogeneity; IH: intermediate
heterogeneity, and HH: high heterogeneity). Abbreviations: Aloy.=Aloysia salsoloides; Ades.=Adesmia
horrida; Par.= Parastrephia sp.; Sen.=Senecio friesii.

DISCUSSION

There is little knowledge in Argentina about the diversity of beetles in these high-altitude ecoregions,
such as the Puna and the Altos Andes, where high altitude, extreme aridity, and marked seasonal and
daily climatic fluctuations are the common denominators. It is important to note that a single species of
beetle from the genus Cylydrorhinus Guérin-Méneville, 1838 (Curculionidae) was found in all of the
environments studied. According to Elgueta (1988) and Jerez (2000), species of this genus are dominant
and endemic to the Chilean Andes. It is also worth noting that Tenebrionidae has a high species
richness in these ecoregions, which corresponds to the findings of Cruz (2017) and Macagno et al.
(2023). As evidenced by its diverse dietary preferences and morphological, physiological, and
ethological adaptations, this family is one of the most diverse in our country's arid regions (Cheli et al.,
2021); they also play an important role in the fragmentation of vegetal and animal matters and food
webs (Aballay et al., 2016; Cheli et al., 2022). According to this study, the LH (55 individuals) and HI
(93 individuals) habitats had a greater abundance of insects. Nevertheless, it is critical to highlight that
within HI, 43% of the documented specimens belonged to a sole necrophagous beetle species, Ptinidae
sp.2. An analogous trend was noted in LH, where 60% of the specimens gathered belonged to the
Bruchidae sp.1.

Because beetles are megadiverse, the inventory obtained is representative, according to Chao et al.
(2009). Due to the difficulty of recording all of their species, this order of insects typically has
incomplete inventories. Consequently, it is frequently required to supplement the information with
additional methods (Chao et al., 2020). Taking into account the sample's estimated completeness values
(g=1 and gq=2), we can say that almost all abundant and highly abundant species were recorded in each
habitat. This leads us to believe that, while no statistically significant differences in species richness
(q=0) were found between the IH and HH habitats, the latter could be the most diverse habitat because
it would contain the greatest number of undiscovered beetle species (Table 2). This supports the notion
that a more diverse beetle community correlates with more heterogeneous vegetation.

The guilds analysed in this study respond differently to vegetation heterogeneity, indicating that
each of the considered habitats has a distinct beetle community structure. According to Megias et al.
(2011) in arid and semi-arid environments, phytophagous and detritivorous beetles are typically more
abundant than predators. Our research does not fully support this claim because phytophagous and
detritivorous beetles were abundant in extremely arid habitats with a single dominant plant species
(LH). However, this was not the case for other arid habitat types, with necrophagous organisms being
numerically significant in IH habitats and predators being prevalent in HH. Some authors (Doblas-
Miranda et al., 2007; Sagi & Hawlena, 2021) have also proposed that detritivores are the predominant
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primary consumers in desert environments due to the brief presence of living plant matter and the
predominance of dried plant remains or leaf litter as the primary resource. In our study, the percentage
of detritus feeders was higher in the LH habitats with less vegetation coverage, which are the aridest.
However, the phytophagous guild dominated these environments with low vegetation coverage and
plant diversity. As a result, only a few families of beetles with specialised adaptations are dominant in
environments with a single dominant plant species, little ground cover, and the lowest layer of
vegetation. In our study, this was predominantly observed in bruchid species, which dominated in
these arid, high-altitude environments with limited plant resources. In general, adult bruchids feed on
nectar and pollen and can be abundant during the fruiting season to lay eggs in those that have formed
(Kingsolver, 2004; Betancourt et al., 2009); however, other species seek out ripe seeds. The highest
abundance of the dominant bruchid species (Bruchidae sp.1) was observed during flowering, spring,
and summer, indicating a strong association between the species and the dominant plant in the
environment. In the future, this type of relationship should be studied in depth. The same four guilds
are recorded in the different habitat types, but the abundance and species composition of these guilds
vary depending on the habitat type. Except for detritivorous, whose species diversity is high in LH
habitats, the remaining guilds tend to increase their species diversity in both the IH and the HH.
Although there are more species of predators in IH habitats, their abundance is greatest in
environments with more dominant plant species (HH). On the other hand, the guilds of phytophagous
and predatory organisms are more diverse in species in habitats with intermediate and high
heterogeneity, even though the abundance of these guilds is nearly identical in these latter habitats.
Vegetation may play an important role in predator-prey interactions in this case (Li et al., 2018), and
our findings would support the enemies' hypothesis. According to this hypothesis, plant species
diversity is positively related to the abundance of predatory arthropods (Root, 1973; Russell, 1989). Our
study demonstrates that the abundance of the predator guild increased positively as plant
diversity /vegetation heterogeneity increased. This could be because phytophagous animals find more
food and shelter from predators in these habitats (Lassau et al., 2005) and predators may have access to
more prey (Li et al., 2018).

The CCA supports the idea that vegetation heterogeneity (vegetation coverage and vertical
structure) is important for predator abundance, but it also shows a weak relationship with
detritivorous. In the case of necrophagous beetles, their abundance is greater in IH, which may be
explained by the greater presence of wild and domestic vertebrates in these high-altitude
environments, increasing the likelihood that these beetles will have access to a food source. The latter is
mentioned by Aballay et al. (2016) for the tenebrionids collected with carrion-baited traps and on
vertebrate carcasses in arid and semiarid areas of Buenos Aires, Catamarca, Mendoza, and San Juan
provinces of Argentina. A greater vegetation heterogeneity (more vegetation coverage and the higher
vegetation layer) provided by a greater number of dominant plant species has a positive impact on the
assemblages of altitude beetles, not only on the richness of species but also on their abundance,
demonstrating that LH habitats are characterised by specific assemblages. Thus, the beetle assembly in
IH habitats is more similar to that in habitats with more dominant plant species (HH), indicating that
the vertical structure of the vegetation and its coverage above ground are driving forces of beetle
diversity in environments above 2500 m a.s.l. These latter habitats share a gradient of change in the
vertical structure of the vegetation, primarily in the lower stratum (less than one metre), due to the
landscape being dominated by low shrubby species and grasses (1.5 m) that are dispersed irregularly
(Morello et al., 2012).

According to Mazia et al. (2006), vegetation coverage is an important predictor of species richness
and abundance when working at small scales, because plants can modify the surrounding micro-
environment. As shown by our study, the vegetation coverage in these environments was different in
each habitat. The vegetation in these mountain environments is distributed discontinuously, resulting
in patches with a high concentration of nutrients in a scarce matrix. These changes in vegetation
heterogeneity in high-altitude landscapes have a direct impact on arthropod assemblages. Thus, the
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low vegetation coverage in our habitat with a dominant plant species (LH) gives its soils little humidity
and greater exposure to high temperatures and erosion. This poses a problem for scarabaeids, carabids,
staphylinids, and tenebrionids (Chung et al., 2000; Medina-Reyes et al., 2021) whose life cycles occur in
the soil (Lescano et al., 2017). As a result, habitats dominated by Aloysia salsoloides support a different
community of beetles, with a highly dominant species of Bruchidae, a constituent of the phytophagous
guild, which is undoubtedly highly specialised to exploit a specific plant resource of those extreme
environments.

Species turnover is the main factor responsible for the high beta diversity observed in the habitats
studied here, indicating a large number of exclusive species in each of them. According to Si et al.
(2016), this component of beta diversity reflects species habitat selection. Following this idea, Barton et
al. (2013) established that the smaller the sampled area, the greater the difference in the composition of
species between sites, because they respond differently to the characteristics of each habitat. In our case,
beetles respond to the number of plant species present, the vertical structure of the plants, and the
percentage of soil cover in each of the habitats studied. So, each habitat type has its own group of beetle
species, which may be a response to the micro-climates (Pérez-Hernandez & Zaragoza-Caballero, 2015)
caused by the different percentages of vegetation coverage. In this way, vegetation is an important
factor in determining the composition of small-scale beetle communities (micro-habitats) in the Puna
and Altos Andes environments, where they respond by changing their assemblages and abundances in
response to a vegetation gradient. However, not only vegetation is a determining factor for beetles
because a wide range of factors interacts simultaneously (temperature, rainfall, soil, salinity, among
others) (Kistler, 1995; Bubenas et al., 2013; Cheli et al., 2021), generating a network of interactions that
define the characteristics of the habitat and, consequently, that of the communities of beetles
responding to them differently, by their food and reproductive requirements (Barton et al., 2013).

We conclude that beetle communities in the Puna and Altos Andes of Salta province respond
positively to a gradient of vegetation heterogeneity. At each end of the gradient, from low to high
heterogeneity, there are very different communities, and species replacement is the key to explaining
the high beta diversity we saw. Thus, Coleoptera communities are more diverse and complex in terms
of guild composition, as the plant communities of the Puna and the Altos Andes are more diverse and
structurally more heterogeneous. Except for detritivorous species, the composition of species within
trophic guilds varies between habitat types, with a tendency for species richness to increase in
proportion to the diversity of dominant plants. In the high-altitude environments studied here, the
abundance of predators increases positively with plant heterogeneity, supporting the enemies”
hypothesis. The diversity of plant communities and vegetation cover on the ground are some of the
major forces that contribute to the diversity of beetles in the arid, high-altitude environments of Puna
and Altos Andes in Salta province. We must not lose sight of the fact that the biota and its distribution
in these arid mountain systems are the results of a variety of current environmental factors, both local
and regional, as well as historical events that resulted in the formation of diverse and heterogeneous
environments. As a result, we must continue to investigate additional potential factors that may be
influencing beetle and other habitat-dependent arthropod communities.
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